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DIAGONAL DISORDER EFFECTS IN THE MEAN 
FREE PATH OF LIQUID METALS 

A. FERRAZ 

Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, 70919 
Brasilia-DF Brazil. 

and 

H. NAZARENO 

Departamento de Fisica, Universidade de Brasilia, 70919 Brasilia-DF Brazil. 

(Receioed 15 May 1989) 

In this work we take account of Fermi level broadening in Bardeen’s disorder scattering model. This effect is 
included in our calculation of the electronic density matrix. We discuss the importance of considering an 
energy dependent mean free path and we conclude by calculating the Dirac density matrix in the presence of 
these new ingredients. 
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1 INTRODUCTION 

In the presence of a disordered array of scatters the mean free path I of a conduction 
electron is certainly finite if it has a wave number of the order of the Fermi wave 
number. A finite 1 smears the Fermi surface and introduces an uncertainty in the k 
values of these electrons. This means in other words that in the presence of disordered 
scattering the wave number is not necessarily a good quantum number. 

We take no attempt in this work to determine the exact density matrix of an 
electron in a random field produced by disordered centres in a metal. We shall turn 
our attention instead to a much simpler model put forward long ago by Bardeen’ 
which, when combined with inverse transport theory, develops into a self-consistent 
generalization of Ziman’s formula for the electrical resistivity. The resulting theory 
makes full consideration of Fermi surface relaxation’.’. We develop this model a bit 
further showing how to take explicit account of the energy levels broadening and of 
the energy dependence of the mean free path. 

2 SIMPLE DISORDER SCATTERING MODEL FOR EXTENDED 
STATES 

Supposing that all the scattering centres of the metal are distributed randomly in a 
slab of finite width, Bardeen calculated the energy derivative c(r,r’; E J )  of the Dirac 
density matrix at the Fermi surface. Using free electron states and taking into account 
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2 A. FERRAZ AND H. NAZARENO 

the fact that collision destroys the plane wave’s coherence, he was able to show that 
scattering plus configurational averaging turns o into 

a(r, ,.’; E,) = C e iki . (r -r‘ )  6 ( ~ ,  - Ei)e-lr-r’l/21 

i 

= o,(r - r’; Ef)e-lr-r’l/21 (1) 

where E ,  is the Fermi energy, 1 is the electronic mean free path at the Fermi surface, 
and 8, is its free electron value: 

The Bardeen density matrix n(r, r’; E,) can be obtained directly from Eq. (1) if we 
neglect the mean free path’s energy dependence. Using standard theory it then follows 
that 

= n o ( r  - r’; E,)exp(-lr - rf1/2l), (3) 
where 

is the free electron density matrix, with j ,  being the spherical Bessel function of order 
1. The finite mean free path effect, in Bardeen’s approximation, is only basically 
manifest in the off-diagonal density matrices. 

As a result if we take the limit r + r‘ in n(r, r’; E,) it then follows that 

k: 
r+r’ 3n 
lim n(r - r’; E x )  = 

indicating that there is no shift in the Fermi wave number for a finite 1. The existence 
of a damping factor e-1r-r’1’2f  guarantees the absence of any discontinuity in the 
occupation number n(k) at k = k,. However since in Bardeen’s model all one-electron 
states are equally attenuated the mean free path effect is overestimated in the low k 
region4. It is therefore essential to transcend Bardeen’s approximation to improve on 
these two aspects of the theory. 

3 DIAGONAL DISORDER EFFECT 

The mean free path is essentially the distance over which the electronic wave loses its 
coherence. When 1 is finite the uncertainty principle introduces a spread in the k values 
of all the scattered electrons. Thus, for a short mean free path this spread is larger and 
the probability that the particle suffers the collision is higher. Let us then assume that 
the electrons most likely to take part in the scattering process are related to one- 
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MEAN FREE PATH OF LIQUID METALS 3 

Figure 1 

electron states which belong to a continuum of energies of width A 2 &p/1, around 
E 2 p, with p being the new chemical potential. Let p ( E )  be the probability that the 
scattered particle has a particular energy E value in this continuum of finite width. If, 
for simplicity, we suppose that all these one-election levels relate to particles with 
equal probability of being scattered, p ( E )  takes the simple form below which is 
displayed in Figure 1. 

for any other E values 

Using p ( E )  we can now argue that the density matrix (o(r, r'; p ) )  which makes explicit 
consideration of the Fermi level broadening is the energy average 

with R = Ir - r'I 

If we suppose that l ( E )  2 1 for the energy region of width A around E 2 p, the 
previous integral can be easily evaluated to give 

- ( k :  - ! ) j ,  [(A: - ~ ) ' " R ] }  
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4 A. FERRAZ A N D  H. NAZARENO 

with k ,  = A. Note that if we take the limit 1 --* co, ( a ( R ;  k , ) )  reduces correctly to 
the free electron result. In order to complete this discussion we need to establish how 
the wave number k ,  relates to both k ,  and I -  '. As we show next this problem is easily 
solved if we construct the averaged Dirac density matrix ( n ( R ;  k,)) .  

4 AVERAGED DIRAC DENSITY MATRIX AND MEAN FREE PATH- 
ENERGY DEPENDENCE 

The averaged density matrix ( n ( R ;  k , ) )  can be obtained in principle from the integral 

( n ( R ;  k , ) )  = dk k ( a ( R ;  k ) )  s:' 
with k = m. If we then use Eq. (8) to replace (a(R; k ) )  it follows that 

( n ( R ;  k , ) )  = !!?dk n 2 R  I(k) { ( k 2  + &) j ,  [ ( k 2  + &)l i iR]  

- ( k 2  - &) j ,  [ ( k2  - &)1'2R]}e-R'1(k1 

(9) 

Due to the their long wave numbers the low energy one-particle states are expectedly 
insensitive to the random field produced by the disordered array of scatterers. These 

Figure 2 
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MEAN FREE PATH OF LIQUID METALS 

particles will rarely suffer any collision. It is therefore reasonable to consider them as 
nearly stationary. If we take this assumption further a natural approximation for l ( k )  
is 

5 

where 1 is the electronic mean free path to be determined self-consistently by the 
transport theory. The simple form of l (k)  is shown in Figure 2. If we substitute this last 
result in Eq. (10) it follows immediately that 

(k: - kp/ l )  jl[(k,2 - kp/l)l/’ R ]  
11’ R ( 4 R ;  k,)) = 

+- “ R ’ 2 1 [ k *  

{(k’ + i ) j l [ ( k ’  + f ) 1 ’ 2 R ]  
n2R ( k L - k , , / f ) ’ / *  

- (k’ - ; ) j l  [(k’ - ;)“’R]} 

Evaluating this last integral ( n ( R ;  k,)) becomes 

sin k,R - cos(R/21) sin 

R 
21 

cos k,R  sin k,R cos 

+ 1 [ k ,  sin (5) (cos k ,  R - cos 
4l2R2ki 

1 
21 Ill + ~ sin k,  R ( 1  - cos (R/21)) 

Note that the first term of the averaged density matrix is simply the free electron result 
with k ,  shifted to (k: - kJ1)”’. Again in the limit 1 + co(n(R; k,)) reduces correctly 
to no( R ; k,). 

In order to establish how k ,  relates to both k ,  and 1 / 1  i t  is sufficient to invoke the 
conservation of the total number of conduction electrons. This implies that, in the 
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6 A. FERRAZ AND H. NAZARENO 

lim R + 0, 

Table 1 
empirical mean free path for some liquid metals. 

Chemical potential wave number, Fermi wave number and 

Element k ,  k f  1 

Na 0.920 x 10' cm-'  0.920 x 10' cm-'  147 x lo-' cm 
Li 1.116 1.12 35.7 
Al 1.74 1.75 18 
Hg 1.35 1.37 6.8 
Pb 1.61 1.64 5 

(n(R;  k , ) )  satisfies the condition. 

1 lim ( n ( R ;  k , ) )  z 2 1 + -- + 0(1-2) 
R-0 3n2 k 3  [ i k i !  

2 .a k3, - k 3  I [l - 3/(8k,I)]  = ~ 3n2 3n2 

In Table 1 we display the calculated k ,  together with the corresponding k ,  and 1/1 
values for some liquid metals. For short mean free path k ,  is slightly shifted with 
respect to k,.  

5 CONCLUSION 
In this work we generalized Bardeen scattering model to take explicit account of the 
Fermi level broadening. We argued that, in liquid metals, it is more appropriate to 
consider all one-electron states, which are far below the blurred Fermi surface region, 
as nearly stationary. For this reason we considered an energy dependent mean free 
path. 

In order to show how large the Fermi level broadening is we display, in Table 2, A 
values, together with the corresponding Fermi energy, for several liquid metals. For 
alkaline metals, A / E ,  is quite small. However, for short mean free path liquids such as 
Pb, this broadening is considerable. Naturally, we need a transport theory to calculate 
the mean free path self-consistently. If we use the theory of inverse transport 
coefficients, I is given in terms of the force-force correlation function F .  An important 
ingredient in this theory is precisely the function T(k, k,, I )  which is the Fourier 
transform of la(R; k,)I2. The numerical results which show how the new features 
discussed in this work affect the mean free path calculation will be presented in a later 
stage. 

Table 2 

Element A 

Na 6.26 x loL3 cm-2 0.42 x 1Ol6 cm-' 0.015 
Li 31.3 0.63 0.049 
Al 96.7 1.53 0.063 
Hg 198 1.87 0.11 
Pb 322 1.34 0.24 

Broadening width A, Fermi energy and A / E f  ratio. 

E f  AIE f 
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